CR-189392

EOS Testbed System
NASA Project Number 5555-07

Final 1994 Report

Principle Investigator: William Emery
University of Colorado
Aerospace Engineering

Boulder, Colorado

September 6, 1994

(NASA-CR-189392) A LAND-SURFACE N95-17327
TESTBED FOR EOSDIS Final Report,
1994 (Colorado uUniv.) 55 p

Unclas

G3/61 0033945

History

The downloading and archival of satellite data is not new. There are several
thousand downloading and archive sites throughout the world. The newest of these
archival sites is the EOS Testbed system (data system) which allows for an archive
site to use low cost storage devices and software to archive and transport data to
end users over the Internet.

The data system started in 1991 from a National Aeronautics and Space
Administration (NASA) grant to provide satellite images to end users via the
Internet. The original proposal was to use Macintosh computers and to deliver
preprocessed images of 520 by 520 pixels centered over Colorado. These images
were of all five channels (.03 through 12.8mhz bands); channel 1 and 2 being the
visible channels, channel 3 the nearly visible nearly infrared, and channels 4 and 5
being strictly infrared. These images were processed from data supplied by the
National Oceanography and Atmospheric Administration (NOAA) polar orbiting
satellites, NOAA's 9, 11, and 12.

The post processing of the data was conducted by the Colorado Center for
Astrodynamic Research (CCAR) using a post launch navigation software developed
at the University of Colorado and the National Center for Atmospheric Research
(NCAR) (Emery, Baldwin, Rosbrough, 1991). This software would geo-register
the data to a prearranged map projection and center latitude and longitude point.
The range of the image was set to 5.0 degrees (2.5 degrees from the center point) to
set the resolution of the image to its maximum (1km per pixel at nadir).

Images were processed on a daily basis and then were transmitted using the
Internet to NCAR and stored on the Mass Storage device (StorageTek 660). The
number of images processed ranged from three to four passes per day from1989 to
1991. Though each individual image was small in storage size, the volume became

quite large as new images were added to the existing file directory on a daily basis.

At this time, we had no users of the system nor did we have a system that
would deliver the images to the end user. It became apparent that a Macintosh
would not be compatible with operations on the StorageTek 660 nor would it be
able to work as a gateway server to the outside world. For these reasons it was
decided to purchase a Digital Equipment Corp. Dec5000. In 1991, this was one of
the fastest workstations and could be used as a gateway server as well as a
communication device to the StorageTek 660.

The original system design was very simple. The system would catalog the
images in a simple scrolled window. The user then could pick by name the image
or images he or she wanted and the DecS000 would make a call to the StorageTek
660 to retrieve the image. Once an image was returned to the Dec5000, it would
place the image in an anonymous File Transfer Protocol (FTP) directory for the end
user to pick-up. This setup worked fine when we had only a handful of users, but
as end users began to grow the single FTP directory was becoming cluttered with
hundreds of images and users were becoming confused about which images
belonged to them.

It became apparent that the system would need to track the end users name
and the image files selected and place the images into a new ftp directory that would
be named after the user. This was not a simple task. The StorageTek 660 uses a
software protocol called the MASnet/Internet Gateway Server (Migs). Migs relies
on a string of default variables and returns a sequence number for each request
whether the request is successful or fails. Since the request comes from a machine
and not a user the StorageTek 660 does not know who ordered a request. Once an
order has been processed, the StorageTek 660 sends a mail message to the ordering
machine on the status of the request . Parsing a mail message becomes quite

complex and must work as follows:

(@]

The gateway computer allows a user to login. The user must type in his or
her name. This information is parsed into a file and stored. The user makes an
order or orders and these individual orders are given a sequence number. These
numbers are then parsed into the same file as the users name. Now the gateway
computer knows the files ordered the name of the file, and the user name. As files
are returned to the gateway computer, the sequence number is parsed from the mail
message along with the filename. The gateway computer then renames the file to
the correct name and places the image file or files into a directory the computer
creates for the user under his or her name.

This architecture allowed end users to pick up only the images they had
ordered. Users quickly learned they could order several images (in some cases
several hundred images) and later pick up what images they felt were useful. This
lead to the expansion of the anonymous ftp drive from one gigabyte to 4 gigabytes.
After contacting end users we found that the reason they were ordering so many
images was because they had no idea of whether the image had cloud or whether it
was clear. Subsequently, they would order all the images and sort through them at
a later time. What was lacking was a way of seeing exactly what you were ordering
before you place the MIGS command.

Browsing by image name was not enough. End users needed to be able to
view an image before it was ordered. This request lead to the visual browse of the
images. To my knowledge we are the first to create on-line visual browse of
AVHRR images. This was an even more complex task than the parsing of the
sequence mail messages as described above.

The gateway computer would need to use a language that would be able to
transmit an image over the Internet and display that image on the end user's
computer. Motif Xwindows was chosen to perform this task. Xwindows would

allow for the capture of an image and the placement of it within a window widget

called a bulletin board widget. With the image captured, it could then be transmitted
within the widget and displayed on any computer being serviced by Motif or Open
windows.

All display widgets use a colortable (colortable being the pixels color values
using the Red, Green, Blue matix and being scaled from 0 to 254) . This colortable
must be created each time an image is displayed. Because a colortable can be
altered for specific needs or display purposes we found that a colortable had to be
created as a default to support the browse images. What this means is, if the users
computer did not support a colortable that would display the browse image, the
gateway computer would first send a default colortable to allow the end user to
view the browse image (Figure 1).

With the feature of on-line browse the amount of non essential mass store
retrievals dropped. What developed next was that the area coverage was not large
enough for many users. We found that users now wanted areas that were not
within our preprocessed image sizes. It was determined that we would start
processing larger images to include coverage over the west coast. Increasing the
image size increased the volume of data that was transmitted back to the end user.
Once an image was delivered to the end user he or she would then crop the section
of the image that they needed and discarded the rest. Pressure from end users lead
to the final system (navigate) which was designed to allow the end user to geo-
register his or her own image in the zone of coverage, and the type of resolution

and map projection that would best suit their needs.

Phase 1 Navigate System
It was determined that the navigate system would use our existing
navigation program and have Xwindow interface to build the command line that

would geo-register the images (Figure 2). Since the navigation code had never

been developed to geo-register several images at once, the data system would need
to be modified to spawn off a child to wait until a file was returned from the
StorageTek 660 to navigate the image or images. Prior to this time, all of the files
on the StorageTek 660 were preprocessed images. Now it would be necessary to
store a full AVHRR data pass of 130 megabytes each on the StorageTek 660. This
type of data had been archived from late 1989 and required several months to be
placed on-line using the StorageTek 660. When an order was placed, the
Xwindow display windows would spawn a child to hold the command line in
active memory. This process would contain information on how to geo-register
the images, the user name and the delivery file directory. The command to return a
file from the StorageTek 660 went through the MIGS gateway computer, where the
status of the request would be assigned. This first design relied on the StorageTek
660 as the file storage device. Because of access problems and time constraints, the
first phase on navigate never worked correctly. The StorageTek 660 would deliver
less than 50% of the files on time. Before the navigate system, it did not matter if
the files took several minutes or even several hours to return. The intermittent
delivery time of the data files caused serious problems in the navigate system.
When files were not returned in a reasonable period of time, the navigate system
would keep spooling the navigate command in memory. This spooling would
continue to build until the computers memory was full and cause the computer to
crash. By setting a time-out to the spooling process, meant if a data file did not
return on time the process was stopped. Either of the above cases meant users were
not getting their images. Since we were using the StorageTek 660 for free we were
not a high priority of NCAR to service our needs. We had several meetings with
NCAR and it was determined that a test would be run to find out exactly how long
it was taking to return a single file. After a week of testing, it was determined that

the average file took between 25 and 35 minutes to be returned to the gateway

computer. This time constraint was much too long. Memory processes could not
be spooled this length of time and not become corrupt. This lead to the navigate
system not making any calls to the StorageTek 660 and allowed end users access to
only current passes that were updated daily. Complaints about the lack of past data
and the data system having no control over the NCAR equipment lead to phase 2 of

the navigate system.

Phase 2 Navigate 1I

Navigate I was developed from all the information that had been gathered
from the previous years of work and research. The new system would have it's
own storage device, track it's own files and tapes, allow sorts on the data prior to
ordering and would have a windowing design that would simplify all of the

complex operations that are hidden from the user.

Hardware Design

The first phase of navigate used Digital DEC Station 5000 to be the gateway
computer. This system was extremely reliable in its hardware. For this, DEC was
again approached to find a machine that would have extensive I/O operations and
be able to still allow file transfers while being hammered by internal jobs. From all
machines that were proposed, it came to our attention that the new DEC Alphas
were going to be the best choice for our needs.

The original machine that was offered was a Digital DEC Station 3000/400
(a mid range Alpha). Our original plans were to use one high speed machine to
operate both the data storage system as well as navigate the images. By testing the
navigation program on a loaner Alpha, we found that the navigation code would

take several minutes and would need to be executed on a separate machine. This

expanded and complicated the system design in that now two machines would need
to work as one.

Again, Digital was contacted on our current design and the use of a Turbo
Channel connection was advised to allow the two computers to be hardwired to
each other and work as one. The Turbo Channel proved to be a dismal
disappointment in that it was only two ethernet cards that would allow
communications between two machines that were not connected via the Internet. It
was later discovered that the Turbo Channel could be made to work as we intended
but we would need a special router and the cost of the router was half the price of a
new DEC Alpha.

Our previous work with navigate showed us that we would need a disk
farm to hold and transfer data. Western Scientific had high speed drives that could
accept our data at rates above 5 megabytes per second. This speed would allow a
data file to be transferred from tape to drive in less than 5 minutes. The drives
selected were two 8 gigabyte drives. The 16 gigabytes would allow us to offer
more files and allow more users to access the system without complications.

Now with the driver and storage requirements completed, it was time to
define our needs for a storage device. Our AVHRR passes are on average, 130
megabytes in size and we archive three to four passes per day. It became quite
apparent that we would need to archive by 1994, one full terabyte of data. This size
requirement immediately eliminated a great deal of the storage systems.

Research into storage devices showed that we would need to purchase equipment
and software that was ranging from $50,000 to $150,000 US. to immolate the
StorageTek 660. This cost structure was far beyond the budget requirements.

After an extensive search, the three final choices became: the 4mm Dat

drive, a read write CD-ROM and the Exabyte 120i 8mm tape system. All of our

data was currently being stored on Exabyte 8mm tape and using a 4mm Dat system

-~

would mean that all data would need to be rewritten, and tapes could not be shared
with the current lab drives. At the time of procurement, the 4mm Dats did not have
the final storage requirement of a full terabyte. Read write CD-ROM is useful when
the files are exactly the same size and all of the data is ready to write at a single
time. This system was not viable for our needs in that we would need to store data
until we had exactly enough to fill a CD and then write the CD. With current
SONY read write CDROMs you can write several times to a CD but the cost again
is prohibitive for our project.

The Exabyte 120i was chosen as the medium for our data storage system.
The 120i offered many flexibility's we needed. First, the 120i uses four Exabyte
drives giving us the ability to [read, read, read, read) or [write, write, write, write]
or any combination of the above. This would allow us to serve several users within
a short period of time. The 120i, using the Exabyte 8500C compression drives,
will hold over one terabyte on its 120 tapes (note 116 slots within the 120i and 4
tapes in the drives).

Unfortunately, the 120i with all of its hardware capabilities did not use any
type of driver software to actuate the robotics arm in the fashion that we would
need. At this ime, Exabyte was approached and manuals were supplied explaining
the hardware operations of the 120i and the 8500C drives. From this point, it
became apparent that driver software would have to be developed from scratch and

implemented onto our DEC Alphas to run the meteorological data archive system

(MDAS).

Software Design

Meteorological Data Archive Software

By researching software packages to run our data storage system we found
that there was a lot of freeware software that could be used as a building tool to
create a data storage system. GNU database software was chosen as the base tool
and standard C programming for building the data storage software. GNU is a
very powerful package in that it allows for remote procedure calls (RPC) to access
files and servers at multiple times. GNU also allows any type of interface to be
used as the callback design function. By using GNU, we saved months of
programming and made the software easily portable to any type of computer.

(assuming that the computer has a C compiler).

Exabyte Driver Software

The driver software became more and more complex and the operations
started to take shape. The driver not only needed to operate from the hardware
calls, it needed to have multiple error checking returns placed in the code to allow
the MDAS system to work correctly. Since the driver software was developed for
the 120i running on an DEC Alpha, we are not sure how the system would operate
if it were to be recompiled on another type of system running ULTRIX UNIX or
Solaris. The driver software handles only the operations of the Exabyte 120i
robotic arm . The driver software tracks errors and usage of the hardware. The
driver software will return errors if and only if the arm cannot complete it's task.
The software does not handle any maintenance of the drives or any type of error
dealing with the status of a file or errors from the 8500C drives themselves. The
driver software is truly the hardware coding for the driver arm only.

Interface Software
From the first conception of the data system, Motif Xwindows has been the
primary window interface (relying on Widget Create Library calls (WCL) to

develop and manage the windowing interface). WCL is freeware distributed
through anonymous ftp at Massachusetts Institute of Technology (MIT). The
original code was developed for Sun workstations using X11 version RS for
Motif. Using WCL as a GUI builder allows C programming code to be passed
into callbacks that intern are keyed through WCL by the use of buttons, pulldowns,
etc. WCL allows full access to an applications defaults file (Figure 3). This file
controls the colors, design, and placement of windows. This application defaults
file allows the windowing design to be flexible for the implementation of the

interface.

Implementation of System
Hardware

Our hardware did not arrive until the beginning of 1994 ,putting us eight
months behind schedule. The first piece of equipment to arrive was the Exabyte
120 along with two Exabyte 8500C drives. The 120 was originally thought to
operate exactly like a test Exabyte 10i unit we had based the driver software
operations on. We found that there were a few changes that needed to be
implemented to make the 120i work correctly. This meant using a self diagnostic
software system to track the calls from the Alpha (a lab loaner machine) to the 120.
Through the use of this tracking software, we could see the error messages and the
calls that were being passed to and from the 120 allowing us to correct the driver
software bugs. The task now became one of tweaking the CAM calls for the 1201
to allow it to operate correctly.

The original DEC 3000/400 machine was backordered for over 6 months
and Digital decided to give us their newest machine, a DEC 3000/600. The 600ds
is even faster than the 400ds (a 600 runs at a clock speed of 150) allowing us to
operate more efficiently. As we started hooking up all of the hardware, we found

10

complications in that the Turbo Channel did not work (as previously mentioned).
In addition, our two new alphas were delivered without an operating systerm and we

needed to find a version of Open Software Foundation (OSF).

Software
Operating System Software

OSF is the latest type of operating system to be used by the Alphas. It
allows for complex calls with the versatility of other operating systems (at least, this
is what we were originally hoping for). What we found was that OSF should not
have been released. Throughout the past five months, each machine has been
loaded with a completely new operating system five times. The first version to be
loaded was version 1.2, followed by version 1.3, then version 1.3B, then version
2.0, and finally version 2.0 revision 250.

Version 1.2 would not allow for any SCSI cam operations. Each time a
drive was attached to the Alpha, the system would crash. There was to be a fix for
this in version 1.3, but again, we could not get any CAM interfaces to operate.
Version 1.3B finally fixed the CAM errors and allowed the driver software as well
as the Exabyte drives to operate correctly. All of the interface software uses Motif
X libraries being called from WCL. WCL would not compile on any version prior
to version 2.0. Digital first claimed it was our software and not a problem on their
part and that other groups were using Motif on the Alphas without any trouble. At
this point ,these groups were contacted and none of them had gotten Motif working
correctly.

Through DBX tracking, we found that Motif was crashing before it ever
got to main. This meant that it was a memory problem. We sent the error message
to Digital and after a week of review they reported that there was a malloc problem

and that it would be corrected in version 2.0. We now purchased version 2.0 and

11

with minor changes to the WCL code we were able to get the software working
correctly and the interface brought up it's first windows.

The other side of the coin was that what problems Digital had solved in
version 2.0, they created new problems in the CAM area. Again, our drives
became useless, and the driver arm would crash each time the machine was
rebooted. Digital was again approached and we found that all of our complaints
would be corrected in version 3.0. At this point, we could not wait. The data
system was off-line and needed to be operational by mid summer. It was then
decided to run one Alpha with version 2.0, to run the windows interface, and the
other with version 1.3b, to run the Exabyte 120. This is not the best scenario but

time constraints make for drastic decisions.

Driver Software

The driver software was developed at the University of Colorado (CCAR)
to actuate and monitor the robotic arm in the Exabyte 120. The 120 did not come
with any type of software to drive the arm or intrinsic functions to use the 120 as a
store and retrieve data system. The driver needed to be able to position the arm in
the correct position to pick out a tape and place the tape within the 8500C tape
drive. Coding for this operation meant getting into the HEX stream of the machine.
The robotic arm is belt driven and counts rotations on a spindle gear to determine
the location. The base system knows of a home position and uses an optic sensor
to locate positions within the 120. Knowing these positions, the robotic arm is able
to continuously know it's position. If the driver arm looses it's position, the base
coding will reset the arm and return it to home and put the arm into a configure
mode to optically find the set location points and the drives. The 120 will also
reset itself automatically every 80 calls. This reset caused difficulty for the MDAS

system which interpreted this as an error. This reset is set by Exabyte and is not

able to be overridden or the duration changed. During this process, the 120 is off-
line and no calls can be made to the unit. Once the arm is through finding all
internal positions, it will continue to finish jobs placed through MDAS.

The coding to run the arm is written is C and relies on SCSI/CAM
commands and returns. Being Common Access Method (CAM) specific, the calls
are simplified and but since CAM is not an industry standard each call is specific to
OSF 1.3B, making the driver only operational on an Alpha running OSF 1.3.B.
Each command in SCSI must return a 0 or a 1 for completion or error. If an error
is sensed, the driver code will fill out a data structure to interpret the error and place
that error in the user error file (uerf) located in the root directory on the Alpha.

At this point, the driver software has failed to be operational on OSF
version 2.0 or version 2.0 revision 250. Researching through Digital support has
found that these versions do not understand what type of SCSI drives are attached
to the computer. Because the CAM commands to Sleep, SleepLock, SleepUnlock
all come from one library call (PRDVIS.MPL), version 2.0 or higher causes a
reboot each time this type of call is placed to a tape drive. As of this time, it is a
mystery as to the cause of the system crash, but Digital has informed us that with
version 3.0 this will be corrected.

Interface Software

To contend the time constraints on the MDAS system, the entire user interface was
developed using a DEC 5000 personal computer with WCL and the Motif X11 RS
libraries installed. The interface windows were operational in this environment and
were ready to be ported to the Alphas as soon as they arrived. What we were not
ready for was the problems that developed trying to port WCL to the Alphas. The
first time WCL was installed it would core dump and cause the full operating

system to be rebooted.

13

After a hit and miss approach, we found that we could compile WCL by
compiling the sub directories MRI and ARI separately. After review of the WCL
source code, we found that ARI was not being used for any of our type of
windowing and was not needed. At this point we removed all of the links to ARI
and compiled WCL using MRI only. With WCL compiled, we started to port the
interface software onto the Alphas.

At this point, we started to get operation errors in trying to manage the
interface. As discussed before, the windows were crashing before main could be
initialized. This meant that the memory was not being allocated correctly. Malloc.h
is a file that controls the size requirements for memory. This file is contained in the
include files for the operating system (OSF). As mentioned above, we delt with
Digital on this problem and found that our operating system would need to be
reinstalled to version 2.0 revision 250 for our memory problem to be corrected.
This meant reinstalling yet another operating system and reinstalling WCL.

After the new operating system was reinstalled, we found that the interface
windows were able to get past main but would crash before the parent window
could be initialized. We started from scratch and reviewed all of WCL. Since
WCL is freeware and we were installing on a machine that was new, there was
absolutely no help from MIT, Digital, or other users of WCL. After a lengthy
review we found that in WCL the operations rely heavily on the passing of integers.
As WCL passes integers it expects to have integers returned. By returning an
integer, this could mean returning an integer pointer or a long. We found that we
needed to cast the integers to a long and this corrected WCL errors and allowed the
WCL to operate correctly.

It should be noted that OSF is extremely picky on the types of pointers,
character pointers, integer structures and castings that are in code not originally

written on or for the Alphas. This selectivity caused hours of delay in trying to

14

compile code for the Alphas, especially those codes that are integer dependent.
With WCL running correctly, the window interface was able to operate on the
Alpha running OSF version 2.0 revision 250. It is our conclusion that WCL will
not run on any other version of OSF with the possible exception of version 3.0

which is due to be released next month.

System Operation

Interface Windowing System

The interface for the MDAS system was developed to operate with simple
window commands. Through the experience gained with the previous navigate
systems, users required windows that were easily understood and easily operated.
The initialization of the system requires a user to set up an xhost relationship
between his or her computer and the gateway Alpha. This is a simple UNIX
command

(>>xhost <gateway>).
Once the users machine returns the accept message
(<gateway> added to access control list)
the user can then telnet to the gateway computer with again a simple telnet command
(telnet <gateway>).

At this point, the gateway computer will ask for the login name of the user.
The gateway computer is set up to use a single user and password for all users.
This allows for multiple users without having to manage cach single login. The
user types in the login name and gives the password to the gateway computer.
Once a user has been given access, all control options are defaulted and the user
will not be able to break into the system. The gateway computer will ask the user

for the name of his or her computer. The response can be by Internet protocol

number or by host table name. This request serves two purposes. First, the
gateway computer initializes the windows to be transferred to the users computer.
Second, the security file is getting the name of the machine that is being served.

Once the security file has been updated by the login response, it looks at the
user name and machine from the register file and the xhost request. If there is a
match then the user is allowed to continue. If there is not a match the user is not
allowed access. Also at this point in time, a user is only allowed S navigation
requests per day. The security file tracks this and will not allow a user back on the
system for 24 hours. This security system should keep users from passing their
login information out to others and will force users to register with the system
administrator to gain access to the Navigate Il system .

Motif Xwindows work in a parent child hierarchy format. The first
window to appear is the main window known as the information dialog window
(exp xxx). In the beginning of the navigate system users were asked to fill in their
name, phone, and email address. Complaints were that this was too much for them
to do each time they logged into the system. Navigate II has been altered to accept
only an email address. All other information is parsed from the registration file for
each user.

The information dialog window has two buttons one to clear the screen and
allow you to retype your email and the other to gain access to the system. The
accept callback actuates the security sequence to check the parameters and to allow
the user to gain access. First the name in the email is verified as an actual user.
This check is done by scanning the register file for the email sequence. If found the
name and machine are placed into the active security file. Next, the callback checks
the xhost display that has been typed in prior to the information dialog window

being activated. If the xhost machine matches the users information then, the user

16

is accepted and a small dialog window will appear tellin g the user that they have
been accepted and they can continue (Figure 4).

Once in the Navigate II system, the user can activate a menu that gives a
popup window with four choices: Search Browse, Goes Images, Programs and
Quit. The search browse button actuates the search window that must be activated
in order to continue with the AVHRR navigation process. The user must first
decide what latitude and longitude to center the search. Other options for the search
include: starting and stopping time interval and which satellites data should be used.
If the user does not know the latitude or longitude of the area but of a major city
near the area of coverage, a pulldown window can be activated from the cities
button to reveal some of the major cities within the coverage area. By selecting a
city the latitude and longitude dialog text widgets are filled with the correct values
(Figure 5).

Once a search is activated, the DoSearchCB will go out and evaluate each
browse image and create a file that will contain the name of each browse image that
has the search coordinates, time frame, and the satellite(s) selected (Figure 12).
Once the system is finished, the SearchCatalogCB is activated to reveal the file
names through a popup scrolled window (note: this also puts the list of the files in
the navigate fileList popup window) (Figure 6).

When the user clicks on the file name, the ViewCB is activated to allow the
browse image for that name to be displayed (Figure 13). This callback requires the
use of the colors.c and colors.h files to allow the image to be placed within the
window widget and to be viewed on any type of computer (Figure 1). The images
are preprocessed, low resolution images and are viewed by use of a greyscale
colortable. At the bottom of the viewing window are three buttons: one button
returns you to the browse list that was generated by DoSearchCB, the next button

activates the navigate window, and the third is a quit button.

17

The navigate window is the most complex window in the Navigate II
system due to the operations that may be activated. The window can spawn four
process commands. The first grabs the parameters in the window and used this
information to create the navigation command line (filename, latitude, longitude,
range, channels, and zenith angle). The second is a command line created to access
the MDAS system (filename, and return path). Along with the navigate and MDAS
commands, there are two other spooled processes that must be held in memory until
the navigation process is complete. These processes produce an overlay map and
scale a two byte image to an eight bit image. This one navigate window has a total
of 7 callbacks associated with its operation (Figure 7).

Once a navigation process has been started, there is no way for the user to
append or quit the external process. This feature was designed into the system to
not allow files to be deleted from the queue table in MDAS until the MDAS system
clears its files in the correct sequence (to be discussed further in the MDAS
section). The time an order is placed to the time a finished image is delivered to the
FTP directory is less than 10 minutes -- three to four times faster than the original
Navigate system.

To retrieve a file from the 120 and place the AVHRR data file onto a
designated hard drive takes less than 5 minutes (time is based on retrieving a 130
megabyte file located at the end of a 40 file tape). The longest period of time
involves moving the data file to the navigation drive for processing which takes 4
minutes. The current navigation code that is running on the Alpha has been
modified for the MDAS system and will navigate the AVHRR data file in less than
60 seconds.

Users may only request 5 navigations per day. Since we have not been
able to test the full load scenario on the Alphas, the number of navigations may

increase or decrease depending on the usage load placed on the computers. Once a

18

user has finished his or her requests, the system will automatically build an FTP
directory under the users name and place the ordered images from their requests in
that directory for the user to pick-up (Figure 8).

The GOES callbacks only allow the viewing of a preprocessed full disk
image. The GoesViewCB is similar to the ViewCB used in the AVHRR browse
image in that a scrolled list of GOES images are set active by the double clicking of
the mouse button and they are viewed in a manner similar to browse (Figure 9).
The actual ordering of the GOES images is drastically simplified in that no
processes must be actuated and the file is simply moved into the users FIP
directory. All of the GOES images are placed on-line on a rotating basis where one
weeks worth of data is placed on a single hard drive. The oldest file is replaced by
anew file. In this fashion we can keep a full week period on-line at one time.

The programs callbacks again only place a selected file from a scrolled list
window into the appropriate FTP directory (Figure 10). Both the GOES and the

program's callbacks must track the users name and ordering sequence.

MDAS System

The Meteorological Data Archiving System (MDAS) was developed to track
and retrieve the AVHRR files for the navigation process. MDAS is solely written
in GNU database software and C coding. GNU simplifies the calls and allows a
flexibility in porting the code to other computer platforms. GNU is freeware and is
distributed to Internet users for the development of software products.

MDAS relies solely on remote procedure calls (RPC's) where the client
Alpha makes calls to the MDAS server Alpha which in turn stores and retrieves
files within the 120. The MDAS server, and storage devices may all reside on
different machines. The RPC mechanism takes care of the system calls used in

network communications and the details associated with the data format

19

conversions between the Alphas. The RPC calls, for storage and retrieval, are sent
from the interface windows application process to the MDAS server where they are
queued. The MDAS server then makes its own RPC calls to a device daemon,
which runs the driver software to retrieve or place a tape for the file transfer.

Setting up the MDAS system requires starting the MDAS daemon as well
as a daemon for the device driver. Both of these daemons run on the server Alpha.
A MDAS server / client relationship must be executed on each client computer to
have access to the MDAS system. This is formatted by each client knowing the
Internet Protocol number of the server and the server identifying which computer is
making a call. The MDAS system uses the RPC calls to: load_new_tape,
unload_tape, load_tape, lock_loader, unlock_loader, and lock_unlock_database.

If for any reason an error occurs during any process of the MDAS in either
a device, or internal error, the MDAS system locks (through the data base)
whatever resources it was using (a drive or robotic arm), essentially freezing that
part of the system. MDAS then mails the system administrator a message
explaining the error and it is then the system administrator 's responsibility to
correct the problem and restart the system. Until we gain more experience on the
MDAS system, it is better to freeze the system than to try and recover from an
unknown error and risk corrupting the database or contents of the tapes.

Both the server and the device daemons also write time-tagged error
messages to stderr or stdout, which is redirected to a file when starting the server
and device daemons. Currently , MDAS handles the following errors:

dd errors on a read or write to tape; which could be from a bad tape, a disk being
full, a hard disk failure or a drive failure. Second, if a tape is not found in the
correct slot. For this to occur, an error was made on the operators part. The data
system knows of each tape from the tape table and the only way a tape could not be

in the correct slot is for it to be moved outside the control of MDAS. Third, if a

wrong tape header detected. Again this is a human error where the operator either
put the right tape in the wrong slot, or the wrong tape in right slot. Fourth, is a
loader arm failure. Though MDAS is capable of capturing this error, the 120's
robotic arm does not return any type of error message. The MDAS system will
continue on the assumption the loader moved the tape as directed, until another
error occurs, which will either be the file set error returned by the tape device
driver or a dd error. Fifth, the drive fails to rewind and eject a tape. This has not
been physically tested but the drive arm should sense not being able to pick or
place a tape in the drive. Or finally, an internal database error. This is a very
serious error. The scenarios for this case to happen are that the computer has
crashed during a database file write or someone accessed a database file while it
was being accessed by the MDAS system, causing a read / write conflict. This
error is caused by a bug in the GNU database software.

The MDAS system uses the RPC calls to: load_new_tape, unload_tape,
load_tape, lock_loader, unlock_loader, and lock_unlock_database. To load a new
tape, the call, load_new _tape, calls a device daemon procedure which will
physically load the tape into the 120, then adds a new tape record to the tape_table
database. The systemn manager must first lock the loader before this call can be
initiated. There must also be a free slot in the 120 and the tape should be physically
placed in the slot before continuing. The new tape call will ask the administrator
questions about the tape, such as: What is the tape name. Will it be a read, write, or
both. Does the tape contain files? How many files? What is the free space on the
tape? And finally, which slot will the tape reside? After the tape has been added
the tape table will contain the status of the tape, times mounted, last file position,
and tape header.

Load tape is similar to load new tape except that the MDAS system already

knows the information about the tape, it just needs to know the new position of the

tape. Unload_tape calls a device daemon procedure which will unload a tape from
the 120. It will then update the tape record in the tape table database. Unload-tape
changes the status of the tape table record from LOADED to NOTLOADED making
the MDAS system aware that the tape is no longer loaded in the 120. If calls are
made which required the unloaded tape, the systems administrator will receive a
message from MDAS telling them to load the unloaded tape so processes can
continue.

Lock_loader calls into the MDAS server daemon, and acquires sole use of
the 120 robotic arm. It waits to acquire the robotic arm from any requests ahead of
this command. Once Lock_loader takes control it will create it's own queue table
record. The Unlock_loader calls back into the MDAS server daemon and remove
the queue table record created by Lock_loader and signals that the robotic arm is
ready for processing. Finally, the Lock_Unlock_Data_Base is a function to enable
the operator to run the load and dump database executables safely while the MDAS
server is running and servicing requests. This locking ensures that only one
process is accessing a table at once, so that the situation where one process is
writing while the other is reading is prevented. The Lock_Unlock_Data_Base calls
to the MDAS server daemon and locks or unlocks a database table.
Lock_Unlock_Data_Base with lock type equal to 1 will block other processes
form accessing the table if it is already locked by a server process (or by an earlier
call to Lock_Unlock_Data_Base). It will unblock once the lock is released, lock
the table itself and return. Lock_Unlock_Data_Base with lock type will equal 0,
will unlock a table regardless of whether it was locked by a previous
Lock_Unlock_Data_Base or by a server process. Therefore, it is very important
never to unlock if you have not locked beforehand (for the same reasons that
Lock_Unlock_Data_Base works by setting semaphores located in memory which

is shared between the server and it's child processes).

9
[§9]

The MDAS system is largely a database-driven system. Six database
tables (each a binary file) are used for storing static information about the files,
tapes, devices and owners, as well as serving as the dynamic request queue, and
the synchronization point for processing of a device resources and log history of the
steps taken by each request. The first of these data files is the queue table. The
queue table deals with only three types of requests: store a file, retrieve a file or lock
the robotic arm. The queue table tracks the driver by using two commands:
Using_Drive and Using_Loader. Both of these records track the current process
and status of the queue table.

The queue table has four waiting records: Waiting _For_Free_Drive,

Waiting _For_Free_Loader (if more than one 120),
Waiting_For_Operator_To_Load_Tape, and Waiting For_Tape. The "Waiting
records” have status's of next requests and are held in the queue table until they are
moved to the "Using records”. The queue table work with the file and tape tables
to decide where a tape should be loaded and, if more than one 120, which arm
should be accessed.
The final records are Copy_File and Duplicate_Request. Both of these are
important in that the Copy_File works to transfer data from one tape to another.
This may happen when copying old files to a new tape and works in the backup
dump mode. Duplicate_Request saves the MDAS system from going and getting a
file from tape more than one time, if it currently exists in the cache. If two users
request the same file within or about the same period of time, the MDAS system
will flag the Duplicate_Request record and will know not to retrieve the file again,
but to leave it in the cache directory so it can be processed for the second user.

The tape_table deals strictly with the name of the tape, owner, permissions,
default device, location of the tape, status, times mounted, amount of free space on

the tape, and the last file position. Each tape is listed by a name. It can be a user

name or any type of designated UNIX name. An owner can be assigned to a tape
(in our case the data system tapes are owned by the system). As with any file,
permissions can be set for a full tape or files on that tape. The default device
parameter works by selecting a drive specified for use and the MDAS system will
not process that tape until that specific drive becomes free. This work well in the
down loading of new AVHRR passes to the MDAS system, since one drive is
designated at certain time intervals to upload data. The location of the tape within
the 120 is important to the MDAS system for the previously mentioned reasons.
Status has also been discussed earlier in whether a tape is LOADED or
NOTLOAED. The Times_mounted parameter is important for several reasons. If a
tape has been accessed an excessive amount of time, it would be best to copy the
data to a new tape. If a tape has not been accessed at all or very seldom it might be
best to not store that particular tape in the 120. Both of these functions can be
easily accessed through the use of this parameter. The amount of free space on a
tape becomes a crucial piece of information for the MDAS system. This tracks how
many files are on a tape and how much space is available for further storing
capability. For these reasons the last_file_postion parameter is also needed to
maximize our storage capability.

The file_table tracks the filename, owner, file size, tape name, permissions,
file position, total access, and last access. The file name is a key field. This is
what the returned file is named. The owner of a file may or may not be the owner
of the tape (example a system tape may contain files from several users). The file
size is used to check the dd process as well as capacity of the tape. The tape name
parameter contains what tape holds this file and where this tape is located in the
120. Permissions can be set for any file to be read, write, execute or any
combination of the above for a variety of users. File position is the number of end

of file (EOF) markers to pass on the tape b before reaching the beginning of the

file. The total access time is the total number of times the file has been read, plus
one for the original write. And finally, the last access time is the last time the file
was read, or the last time it was written to tape if it has not yet been read.

The owner_table tracks various administration records such as: the owner,
hosts, groups, number of tapes allowed and mailing address. All of the above are
set by the system administrator. The owner of the particular file may or may not
own the tape that the file resides on. Each user of the MDAS system may be limited
to the number of tapes they have access to and the number of tapes they can write
to. The mailing address parameter is used for system calls like: the users tapes are
full etc.

The device_table is used solely for the MDAS system to check for devices
such as the number of storage boxes (120) , number of tape drives, set paths. cache
path and quota and number of tape slots. This record file will allow for the addition
of multiple device drivers, multiple cache directories and allocations of tape slots.
The device_table is the first record initialized when MDAS starts up.

The history_table is a log of all processes, forks, and requests to the MDAS
system. It is a running log of all commands and successful or failed requests to the
system. It does not control any actions of the MDAS system and is strictly an
administrative file. It should be noted that all tables are operational in the binary
mode. To edit the files by hand, they must be converted to ASCII and returned to
binary format for the MDAS system to operate correctly.

These above database tables are the backbone of the MDAS system. With
this information that the tables provide, the MDAS system can retrieve and place
files within the 120 on a continuous and correct fashion.

The MDAS system, as previously mentioned, relies on RPC calls to operate
the GNU database software. A user interface incorporating all of these procedures

is set in the systems manager driver. This interface software will allow the system

19
(9}

manager to read and write to the MDAS system without using the Xwindows
interface. (Figure 11).

The MDAS system has the flexibility to add users. Each user can be added in
much the same way as adding a new user to the Navigate system. An ID., group,
host, and home can all be set. Each user can run his or her own interface to the
MDAS system or the system manager driver can be modified to the individual

user's needs.

Conclusion

Having completed the Alpha testing and through the start of the Beta testing,
Navigate II has shown to work exactly as designed. There will always be critics
that site the shortcomings of the original Navigate system. But to date, the storage
system has been able to read files off and navigate them in a continuous and timely
manner.

The only bugs found in the system throughout the testing period have been
minor fixes such as the deselection of a text field which has caused crashes in the
user interface. This has been corrected by not allowing a user to deselect any file
until they have selected another to take its place. Our largest problem, to date ,is
that the OSF operating system will not allow us to use our 8500C drives to write
files to tape. We are able to read without error but writing causes core dumps.
Digital has been contacted and they are sending out a fix to the SCS1/ CAM
procedure calls to allow the Alpha to identify the 8500C drives and operate the calls
correctly. As soon as this fix arrives the MDAS system will be fully operational.
At the time of this paper, Navigate II system can be brought on-line without the
8500 drives being able to write (since all of our data is processed to tape on a

separate system and tapes are then loaded into the 120). Users of the Navigate II

system can only acquire processed images. They do not have access to place data
on the system.

As proprietary software goes, we are not close to the average 10,000 man
hours that go into a commercial software package. However, we have developed a
low cost storage system that can be modified to store any type of data in any type of
format. Interfaces can be modified or quickly rewritten to drive the MDAS system
under any type of scenario. For these reasons it is hard to beat the MDAS system

running under Navigate II.

(g
-~J

e

—
e

—
s
o

Ima.]w

e Mverersesstere A ArOsO oo S P 8 it e RSP o . /T PO O ARETT PY FAPO E oSOR 8 T ln Bo $O0 ¢

o e e A AP O VU B~ P SO SV

Figure 1. AVHRR Browse Image

29

Figure 2. Navigated Image Centered Over Colorado

(MBNAL PACE %
OF POOR QUALTT®

Applications Cefaults flle for Navorder
Csing ¥Ycl lidbrary to create the vindevs

30

b
) (@) 1994 Tinm Kelley
I
]

' Cefault usage 1s often DECstaticn,

r
*defaultvVirtualBindings:
csf3ackSpace:
Settizg the Fonts for

]
3
1
‘Pontlist:courier

‘Key:Delete

~he ¥iadowvs

acceptDialog, brslist, filelList, goeslist, °

'
! Navorder is the shell wvidget
!
Navorder.vcPopups:
proglist, vorkiagDialog. citylist
Navorder.veChildrea: mainV¥in, nav¥ian, goes¥in, brovse¥in,
search¥in
Navorder.title: Navigate Prototype Systeam
Navorder‘foreground: yollow
Navorder®background: blue

| Main ¥indov Por B-mall
1

Navorder®*aain¥in.voClass¥ane: IaMain¥indow
Navorder®zaia¥in.veChildren: aspular, table
Navorder*mainVWia. width: 400
Navorder®aain¥ia.height: 200

!

! Menu Bar

1

Navorder ‘menuBar.voConstruotor: IaCreatedenusar
Navorder*amenuBar.veChlldren: fileMenu, file, help

(Pile Menu Meabers
!

brovse.voClassiane:
brovee.labslString:
brovee.Bneacnic:isi-
broves.activateCallback:
brovee.sensitive:

Navorder*filelMenu.
Navorder‘filelenu.
Navorder®fileldenu.
Navorder®fileldenu.
Navorder’fileMenu.
Navorder*fileMenu. seps.voConstruotor:
Navorder*filedeau. goes.voClassiane:

Navorder*fileldenu. goes.labelString:

1
| Main Table

!
Navorder*table.voClass¥ane:
Navorder‘tadle.voCaildren:

XapTable

enall, ebox\
Navorder*table.lLayout:

IaPushButton
Sat Brovse Pass
B

YolanageCB(*search¥ia)
False

IsCresateSeparator

IaPushButton
GORS Iaage

title, acceptButton, clearButtom,\
title 0 0 10 1 tK;\

acceptButton 1 13 3 1 tX;\
clearButton 7 12 3 1 tX&;\
enail 1 6 1 1 hl;\

ebox 3 6 7 1 1h;

Figure 3. Applications Defaults File

OMOSNAL PAGE B
T POOR QUALITY

»>
Q
aQ
2]
=)
-
=t
=
»
o

Figure 4. Information Dialog Window

n

Figure §.

2

14 0 Y

R A

-

enl

UHHAY

.
—
 d
—
-
-
—~—
-
3
=
-,
e
-
N
-
v
-
-
-
—
<

Browse Search Window with Cities List Popup

ORIGINAL PAGE B
OF POOR QUALITY

HHHAVY

EAVIVIE I IR YR

L}

- A
~ .
-
e
-~
-
—
—

Figure 6. Browse Search Window with Brs List Popup

33

Mowpgat pon by o JUAF

AVHFF Dat. B

Latytnds Jentor bBoant i
LoasTitipte Tepteor Boant -1
Fayares In Degress
Chotaeel
Choraee 1 Channel
Choarae-l
Thoaee 1
T 1
Fesolut ron Vel

Finazhed Twage J1C-2

Frojection Tope Tl

eever Loy Hop
opt 1ot Cenlth Areilel
SpotSLinee File
Header ort
Elevatyon Map T O

ZOEvte Imors

Erowze Peturn 1At m

Figure 7. Navigate Window

OQQINAL PACE W
OF POOR QUALTTY

{23 zavigate.o
/¢ Data-Syetem additions */

%z (command.daghg(0Q) == 'y')
/% put together destination dir */
destdir = (chare®)calloc(strlen(command.dashd) +
strlen(cossand.dashu) « 3, sizeof(char)):
spristf(destdir, "%s/%8", command.dashkd, command.dashu);

/* Make sure destdir exists */
%f (stat(destdir, ¥dirsStat) == 0)

/% It exzists. make sure it‘'s a directory */
12 (1(dirStat.st_node ¥ S_IFDIR))
{

retura;
}
else
(%f (errac == ENOENT)

/% It doesn’'t exist, create it */
1f (axdir(destdir, 0738) « Q)
{

) retura:
}

alse

(retura;
}
/* 3¢ we aade it through sll of this, destdir is a directory */
/% oopy files to the PTP area °/

cad = (char *)oalloo(strlea(command.imsgesten) +
strlea(destdir) + 10, sizeof(char)):

12((strlen(connand.dashB)) == 0)
sprintf(cad, “av %8.°.88 %8°, coasand.imagestes, destdir):

else
sprintf(ond, "av %s5.° %8°, coasand.ilmagesten, destair);

systea(omd);

Figure 8. FTP Directory Coding

35

dapansete] naAy o

Figure 9. GOES Browse Image

37

Figure 10. Programs Scrolled List

Figure 11. MDAS Interface

39

void CoSearchCB(¥idget w, ItPointer client, ItPointer call)
{

/% get the search ilaformation '/

/* latitude */
buf = ImTextPileldGetString(vcFullNameToWidget(v, "*search¥in.table.latText"))

/* convert to floatiag polat */

params--lat = atof(buf);

/% Put latitude text field in navigation vindow */
IzaTextPleldSetString(vYorullNaneToVidget(v, "*nav¥in.tadle.latText”), buf);

/% free buffer space */
ItPree(buf);

/% Verify inputted searcd iaforaation */

/* Read 12 the Brovee Catalog file *

1(.2(211._3004)

file_cnt = file_cat + 1;
brovsePile = (char °*)XtCalloc(strlen(navorderfResources.dbrovseDir) -
strlen(named) + 3, sizeof(char)):

spriatf(broveelPile., “%8/%8°, 2AvVOrderkResources.broveeDir, named):

/* check tO see if lat/lon coordinate 1is in this file °*/
tf(ooord_ohook(hrov-orilo.pc:t-l-»lut.pursll-»lon))

/% £ile 18 good -- output filename %o ites list °*/
fileitens(numltess¥rite] =« (char °*)malloc(BUPPERSIZE °* sizeof(char)):

stropy(fileitens(nunItens¥rite]. . naned);
cualtens¥rite = numlteas¥rite + 1;

/e brzn! up brovse list vindow °*/
tprintf(etderr. “bringing up brslist wvindow\n");
ItManageChilda(VYorullNameToVWidget(v, “°brslList®)):
searchCatalogCB(YoPull¥ameToWidget(v, “°brsList®scrollist”).client.call):

Figure 12. DoSearchCB Coding

Yoid viewCB(¥idget v, ItPointer client., ItPointer call)

/% Get name of file selected °*/
ItvaGetvalues(YcPullNaneTov¥idget (v, "*brslist scrollist®).
InNselectedIteas, ¥items, NULL):
IaStringGetLtoR(items(O), XaSTRING_DEPAULT_CHARSET. ¥brsfilenane):
path « (char *)XtCalloc{strlen(BROVSEPATH) - strlen(brefilename) +~ 2
sizeof(char));
sprintf(path, "%e/%8". BROVSRPATE. brefilenane)

/* Open the file */
/* Read i3 the Data */

izage - ¥YoPullNameToVidget(v, “shrovseV¥in‘’inmage"):
12(iasge == NULL) {
/% Creats the iasge vidget */
TevaCreateManagedvidget(- inage”, shoIsagevidgetClass,
YoPullNameToVidget(v, °°*brovse¥in*brsiaageFraze’
It¥inageDats, dats,
It¥imagevidth, vidth,
ItXinageReight, height,
It¥visuallnfo, basioInfo-:>visuallnto,
It¥resPizels. basioInfo- resPixels,
It¥nusResPizels, basiclafo- numResPixels,

NULL):
ItMansgeChild(VorullNaseToVidges(v. “shrovee¥in‘)):
vievCB(v, olieat, call);
} else (
/¢ Use ItVaSetValues */
ItvaSetvValuss(inage, ItNimageDats, data, ItNimagevidth, vidth,
ItNiaageNeight, height, NULL, 0);

Figure 1J. ViewCB Coding

ORIQINAL PACE 18
OF POOR QUALITY

Registered Users

3000

2500

2000

1500

1000

500

Growth Of Registered Users

lllll[lllllllllllll'llll

I 1

| 1 i | I

|

l Registered Users I

|

!

lllllLllllLllllllllllllL

Apr93

Aug93

41

B Moothly Registersd Users

New Registered Users

160 —_——rrrrerr T T

140

120

NS PO T

100

alaaaly

40

aaadasalas

Monthly Registered Users
g

20

Nov$l Ape92 Sep92 Feb3 hi93
Date

Total Megabytes
&
g &
1] l T L l 1 | 1 T l T v 1 l) L B §

:

Total AVHRR Images Shipped

i 1 I i | I 1 | 1 ! i

oA

l 4 1 L | [1

| Total Megabytes I

1 L q I L

| ! | |] |] | | ! |

Dec91 Apr92 Augd2 Dec92 Apr93 Augd3
Date

43

Orders Per Month

Monthly AVHRR

Image Orders

1000

800

¥ L4 1] 1 T T l T L] ¥ I L) 1) l T 1 L

! | I I | i

I |] [|

l | ! |

I Orders Per Month I

| L 1 l L 1 L l 4 4 A l 1 A 4 Ll s 4

| L1]]

Dec9l Apr92 Augd2 Dec92 Apr93 Augd3

Date

44

Megabytes of data per month

1000

800

600

200

Megabytes Of Data Sent Over The Internet

Mcgabytes of Data

199 19,

Nov Dec Jun Feb Mar Apr May Jun Jul Avg Sep Oct Nov Dec J

1 i i T

I
|
|
l

an Feb Mar
1993

Months
Figure. 1

45

Orders

1000

800

200

Orders For Raw Data From Sanddunes

¥ T l ¥ T L I L] L] T I 7 T L] l

A
Nov 91 Jan 92 Mar 92 May 92 Jly 92 Sep 92 Nov 92 Jan 93 Mar 93

Months
Figure. 3

46

I

[N

47

Total Navigated Images In Megabytes

Megabytes of data

Megabytes of data

Dec 91 Apr92 Aug92 Dec92 Apr93
Months

SRR $dee v Wil <o . o

48

Type Of Users By Category

NN N NN NS
TR NN

AA YA Y

Individual Users

Govenament
Coliege
Highschool
JrHighschool
Company
Foreign Gov
Foreign School
NonlListed

50

Fovpg- b Bl b it vkl

-1 1o L os. |ERIR R

Fe-oa T 1y Mo ate

ORIQINAL PAGE B
OF POOR QUALTTY

51

B

;/: 6 26864685&

14056822824 2@ +4 1-

ORIGINAL PAGE &

52

AL
+°
o

VIVCQmpqs

PR

-. .

13842 ND

‘.,

July 2

REPORT DOCUMENTATION PAGE B R G0 0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this coflection of
information, inciuding suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC_20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 6, 1994 Contractor Report

4, TITLE AND SUBTITLE

A Land-Surface Testbed for EOSDIS

6. AUTHOR(S)
William Emery and Tim Kelley

5. FUNDING NUMBERS

930

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Colorado
CCAR, CB 431
Boulder, CO 80309

8. PERFORMING ORGANIZATION
REPORT NUMBER

NAS5-32337
5555-07

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration - HQ/ OSSA
Washington, D.C. 20546-0001

Universities Space Research Association
10227 Wincopin Circle, Suite 212
ia. MD 21044

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

CR-189392

11. SUPPLEMENTARY NOTES

Technical Monitor: J. Hollis, Code 930

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-Unlimited
Subject Category 82

12b. DISTRIBUTION CODE

Report is available from the NASA Center for AeroSpace Information, 800 Elkridgd
Landing Road, Linthicum Heights, MD 21090; (301) 621-0390.

13. ABSTRACT (Maximum 200 worcs)

The main objective of the Testbed project was to deliver satellite images via the Internet to scientific and educational users
free of charge. The main method of operations was to store satellite images on a low cost tape library system. Visually
browse the raw satellite data. Access the raw data filed, navigate the imagery--through "C" programming and X-Windows
interface software--, and deliver the finished image to the end user over the Internet by means of file transfer protocol
methods. The conclusion of this project is that the distribution of satellite imagery by means of the Internet, is feasible, and
the archiving of large data sets can be accomplished with low cost storage systems allowing multiple users.

14. SUBJECT TERMS [15. NUMBER OF PAGES
Computerized Archiving, AVHRR, Navigation 53

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

Unlimited

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)

Prarcribad hv ANSI Sted. 238-1R. 29R-102

